Chapter 12 Surface Area and Volume

Section 5 Volume of Pyramids and Cones

GOAL 1: Finding Volumes of Pyramids and Cones

In Lesson 12.4, you learned that the volume of a prism is equal to Bh, where B is the area of the base and h is the height. From the figure at the right, it is clear that the volume of the pyramid with the same base area B and the same height h must be less than the volume of the prism. The volume of the pyramid is one third the volume of the prism.

Dact 3 1/3 (lxwxh)

THEOREMS

THEOREM 12.9 Volume of a Pyramid

The volume V of a pyramid is $V = \frac{1}{3}Bh$, where B is the area of the base and h is the height.

THEOREM 12.10 Volume of a Cone

The volume V of a cone is $V = \frac{1}{3}Bh = \frac{1}{3}\pi r^2 h$, where B is the area of the base, h is the height, and r is the radius of the base.

Example 1: Finding the Volume of a Pyramid

Find the volume of the pyramid with the regular base.

 $(1/3)(1 \times w \times h)$

 $(1/3)(16 \times 16 \times 15)$

1280 units cubed

(1/3)(1/2bh)h (1/3)(1/2 x 14 x 8)(17) 317.3 units cubed

Example 2: Finding the Volume of a Cone Find the volume of each cone.

a. Right circular cone

b. Oblique circular cone

Example 3: Using the Volume of a Cone Use the given measurements to solve for x.

$$2614 = (1/3)(3.14)(x^{2})(13)$$

$$2614 = 13.601 \times^{2}$$

$$13.601 = 13.601$$

$$13.61 = 13.61$$

$$13.61 = 13.61$$

$$13.61 = 13.61$$

Volume = 2614 ft^3

GOAL 2: Using Volume in Real-Life Problems

Example 4: Finding the Volume of a Solid

NAUTICAL PRISMS A nautical prism is a solid piece of glass, as shown. Find its volume.

Example 5: Using the Volume of a Cone

AUTOMOBILES If oil is being poured into the funnel at a rate of 147 milliliters per second and flows out of the funnel at a rate of 42 milliliters per second, estimate the time it will take for the funnel to overflow. $(1 \text{ mL} = 1 \text{ cm}^3)$

$$(1/3)(3.14)(5^2)(8)$$

 209.3 mm^3

$$T - 0 \rightarrow 147 - 42 = 105$$

$$209_3/105 = 2 seconds$$

EXIT SLIP